

1702EC402–Signals and Systems						
Academic Year :	2018-2019		Programme:	B.E - ECE		
Year / Semester :	II / IV	Question Bank	Course Coordinator:	R.KEERTHIKA		

PART – A (2 Mark Questions With Key)						
S.No	Questions	Μ	C	BTL		
		ar k	Os			
	UNIT V-LINEAR TIME INVARIANT - DISCRETE TIME SYSTEMS					
1	How unit sample response of discrete time system is defined ?					
	The unit sample response of the discrete time system is output of the system is	2				
	output of the system to unit sample sequence. i.e.,		5	K1		
	$T[\delta (N)] = h(n)$					
	Also $h(n) = z^{-1 [H(z)]}$					
2	If $x(n)$ and $y(n)$ are discrete variable functions, what is its convolution sum?	2	5	K1		
	The convolution sum = $\sum_{k=-\infty}^{\infty} x(k)y(n-k)$			K1		
3	A causal discrete time system is BIBO stable only if its transfer function	2	5			
	has			17.1		
	A causal discrete time system is stable if poles of its transfer function lie			KI		
	within the unit circle.					
4	How z-transform is related to Fourier transform.	2	5			
	Fourier transform is basically z-transform evaluated on the unit circle.			V 1		
	i.e.,			K1		
	$X(z) _{z=e^{jw}} = X(w)$ at $ z = 1$					
5	Define system function of the discrete time system.	2	5			
	The system function of the discrete time system is			K 1		
	H(z) = Y(z)/X(z) = z-transform of the output/z-transform of the in input			K1		
	Or $H(z) = Z{h(n)}$ i.e, z-transform of unit sample response					
6	A system specified by a recursive difference equation is called infinite	2	5	K1		

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	impulse response system (True/Felse)			
	impulse response system (True/raise).			
	This statement is true. An IIR system can be represented by recursive difference equation.			
7	If u(n) is the impulse response of the system, what is its step response?	2	5	
	Here $h(n) = u(n)$ and the input is $x(n) = u(n)$ Hence output $y(n) = h(n) * x(n) = u(n) * u(n)$			K1
8	Is the output sequence of an LTI system finite or infinite when the input	2	5	
	x(n) is finite? Justify your answer.			
	If the impulse response of the system is infinite, then output sequence is infinite even through input is finite. For example consider, Input, $x(n) = \delta(n)$ finite length 9Impulse response, $h(n) = a^n u(n)$ Infinite length Output sequence, $y(n) = h(n) * x(n)$			K1
	$= a^{n} u(n) * \delta(n)$ $= a^{n} u(n)$			
	-a u(n)			
9	Consider an LTI system with impulse response $h(n) = \delta$ (n-n ₀ 0 for an input x(n), find Y($e^{j\Omega}$).	2	5	
	Here $Y(e^{j\Omega})$ is the spectrum of output. By convolution theorem we can write, $Y(e^{j\Omega}) = H(e^{j\Omega}) X (e^{j\Omega})$			K1
	$H(e^{j\Omega}) = DTFT \{\delta(n-n_0)\} = e^{j\Omega n 0}$			
	$Y(e^{j\Omega}) = e^{-j\Omega no} X(e^{j\Omega})$			
10	Determine the system function of the discrete time system described by the difference equation.	2	5	
	Y(n)-1/2y(n-1) + 1/4y(n-2) = x(n) - x(n-1)			
	Taking z-transform of both sides,			K1
	$Y(z) - 1/2 z^{-1}Y(z) + 1/4z^{-2}Y(z) = X(z) - z^{-1} X(z)$			
	$\begin{array}{ll} Y(z) \ / \ X(z) &= 1 - z^{-1} \ / \ 1 - 1/2 z^{-1} + \frac{1}{4} \ z^{-2} \\ H(z) &= 1 - z^{-1} \ / \ 1 - 1/2 z^{-1} + \frac{1}{4} z^{-2} \end{array}$			

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

11	Write the general difference equation relating input and output of a system	2	5	
	$Y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$			K1
	Here $y(n-k)$ are previous outputs and $x(n-k)$ are present and previous inputs.	5		
12	Determine the transfer function of the system described by $y(n) = ay(n-1) + x(n)$) 2	5	
	$\begin{split} Y(z) &= a \ z^{-1} \ Y(z) + X(z) \\ Y(z) \ [1-az^{-1}] &= X(z) \\ H(z) &= Y(z)/X(z) \ = 1/1-az^{-1} \end{split}$			K1
13	How the discrete time system is represented.	2	5	
	The DT system is represented either Block diagram representation or difference equation representation			K1
14	What arte the classification of the system based on unit sample response?	2	5	
	a. FIR (Finite impulse Response) system.			K1
	b. IIR (Infinite Impulse Response) system			
15	What is meant by FIR system?	2	5	
	If the systems have finite duration impulse response then the system is said to be FIR system			K2
PART	PART – B (12 Mark Questions with Key)			
S.No	Questions	Mar k	C O	BTL
1	Obtain the direct form 1 and 2 realization for the system described by the difference equation $y(n)-5(6y(n-1)+1(6y(n-2)=x(n)+2x(n-1)))$	12	5	K2

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

810 Signals and Systems

Taking z-transform on both sides, we get

$$Y(z) - \frac{1}{4}z^{-1}Y(z) - \frac{1}{8}z^{-2}Y(z) = X(z) + 3z^{-1}X(z) + 2z^{-2}X(z)$$
$$Y(z) \left[1 - \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}\right] = X(z)[1 + 3z^{-1} + 2z^{-2}]$$
$$\frac{Y(z)}{X(z)} = \frac{1 + 3z^{-1} + 2z^{-2}}{1 - \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}}$$

$$=\frac{(1+z^{-1})(1+2z^{-1})}{(1-\frac{1}{2}z^{-1})(1+\frac{1}{4}z^{-1})}$$
(10.139)

$$= H_1(z)H_2(z)$$

where $H_1(z) = \frac{1+z^{-1}}{1-\frac{1}{2}z^{-1}}$ (10.140)

and

$$H_2(z) = \frac{1+2z^{-1}}{1+\frac{1}{4}z^{-1}}$$
(10.141)

The realization of $H_1(z)$ is shown in Fig. 10.33.

The realization of $H_2(z)$ is shown in Fig. 10.34.

Fig. 10.34 Realization of $H_2(z)$.

Now the cascade realization of H(z) can be obtained by cascading Fig. 10.33 and Fig. 10.34.

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	788 Signals and Systems			
	$y(n) = \frac{25}{3}u(n) + \frac{8}{3}\left(\frac{1}{4}\right)^n u(n) - \frac{19}{2}\left(\frac{1}{2}\right)^n u(n)$			
4	Determine the convolution sum of two sequences x(n)={1,4,3,2} h(n)={1,3,2,1}	12	5	K2
	<page-header><text><equation-block><text><equation-block><equation-block><equation-block><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></text></equation-block></equation-block></equation-block></text></equation-block></text></page-header>			

moblem 8.20 Find the convolution of the fall			
$x(n) = 2\delta(n+1) - \delta(n) + \delta(n)$			
$h(n) = 3\delta(n-1) + 4\delta(n-2) + 3\delta(n-2)$			
$1/(n-2) + 2\delta(n-3)$			
vion:			
$x(n) = \{2 - 1, 1, 2\}$			
$n^{n^{n^{n^{n^{n^{n^{n^{n^{n^{n^{n^{n^{n$			
$h(n) = \{ 3, 4, 2 \}; n_2 = 1$			
$n_1 + n_2 = 0.$			
the sequence $y(n)$ starts at $n = 0$. By following the steps given for			
Thereto volution, we obtain			
$\mathbf{r}(n)$			
$h(n) = \frac{2}{-1} + \frac{3}{1} + \frac{3}{3}$			
3 6 -3 -3 -9			
4 8 -4 12			
= 6, 8 - 3, 4 - 4 + 3, -2 + 4 + 9, 12 + 2, 6			
$y(n) = \{6, 5, 3, 11, 14, 6\}$			
Nethod 2			
Given the sequences			
$r(n) = \{2, -1, 1, 3\}; h(n) = \{3, 4, 2\}$			
$\chi(n) = (2, 2)$ and multiplying we get			
Writing the sequences in matrix form and many set of			
$\begin{bmatrix} 3 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 5 & 0 & 0 & 0 \end{bmatrix}$			
$\begin{vmatrix} 4 & 5 & 0 & 0 \\ 2 & 4 & 3 & 0 \end{vmatrix} \begin{vmatrix} -1 \\ -1 \end{vmatrix} = \begin{vmatrix} 3 \\ 3 \end{vmatrix}$			
$y(n) = \{6, 5, 3, 11, 14, 0\}$			
	+		
		1	

	Part C(20 Mark Questions with Key)			
1	Find the impulse response and step response for the following systemY(n)-3\4y(n-1)+1\8y(n-2) = x(n)	20	5	K2
	Solution: Given $y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)$ Taking z-transform on both sides, we get $Y(z) - \frac{3}{4}[z^{-1}Y(z) + y(-1)] + \frac{1}{8}[z^{-2}Y(z) + z^{-1}y(-1) + y(-2)] = X(z)$ Substituting initial conditions $y(-1) = y(-2) = 0$ yields $Y(z) - \frac{3}{4}z^{-1}Y(z) + \frac{1}{8}z^{-2}Y(z) = X(z)$ $\Rightarrow \frac{Y(z)}{X(z)} = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$ Impulse response for $x(n) = \delta(n)$; $X(z) = 1$ $\Rightarrow Y(z) = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} = \frac{z^2}{z^2 - \frac{3}{4}z + \frac{1}{8}}$ $\frac{Y(z)}{z} = \frac{z}{(z - \frac{1}{2})(z - \frac{1}{4})} = \frac{A}{z - \frac{1}{2}} + \frac{B}{z - \frac{1}{4}}$			

$A = \left(\frac{z}{2} - \frac{1}{2} \right) \frac{z}{\left(\frac{z}{2} - \frac{1}{2} \right) \left(z - \frac{1}{4} \right)} \bigg _{z = \frac{1}{2}} = \frac{\left(\frac{1}{2} \right)}{\frac{1}{2} - \frac{1}{4}} = 2$		
$B = \left(z - \frac{1}{4}\right) \frac{z}{\left(z - \frac{1}{2}\right)\left(z - \frac{1}{4}\right)} \bigg _{z = \frac{1}{4}} = \frac{\frac{1}{4}}{\left(\frac{1}{4} - \frac{1}{2}\right)} = -1$		
$\Rightarrow \frac{Y(z)}{z} = \frac{2}{z - \frac{1}{2}} - \frac{1}{z - \frac{1}{4}}$		
$Y(z) = 2\frac{z}{z - \frac{1}{2}} - \frac{z}{z - \frac{1}{4}}$		
Taking inverse z-transform we get $y(n) = 2\left(\frac{1}{2}\right)^n u(n) - \left(\frac{1}{4}\right)^n u(n)$		
Step response For a unit step input $x(n) = u(n)$; $X(z) = \frac{z}{z}$		
$\frac{Y(z)}{z-1}$		
$X(z) = 1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}$		
$Y(z) = \frac{z}{z-1} - \frac{z^2}{z^2-3z+1}$		
$Y(z) = \frac{z^2 - \frac{1}{4}z + \frac{1}{8}}{z^2}$		
$\frac{1}{z} = \frac{z}{(z-1)(z-\frac{1}{2})(z-\frac{1}{4})}$		
$= \frac{A}{z-1} + \frac{B}{z-\frac{1}{2}} + \frac{C}{z-\frac{1}{4}}$		
$A = (z-1) - \frac{z^2}{(z-1)(z-1)}$		
$(1)^2$ $(z - \frac{1}{2})(z - \frac{1}{4}) _{z=1}$		
$= \frac{1}{\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{4}\right)} = \frac{1}{\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)} = \frac{8}{3}$		
$B = \left(\frac{z}{z}\right) - \frac{z^2}{(z-1)^2}$		
$(1)^{2} \left(z-1\right)\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)\Big _{z=\frac{1}{2}}$		
$=\frac{\left(\frac{1}{2}\right)^{2}}{\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-1\right)} = \frac{\frac{1}{4}}{\frac{1}{4}} = -2$		
$(2 - 1)(2 - \overline{4}) - (-\frac{1}{2})(\frac{1}{4}) - \frac{1}{4}$		

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

	$C = \left(z - \frac{1}{4}\right) \frac{z^2}{(z - 1)\left(z - \frac{1}{2}\right)\left(z - \frac{1}{4}\right)} \bigg _{z = \frac{1}{4}}$ $= \frac{\left(\frac{1}{4}\right)^2}{\left(\frac{1}{4} - 1\right)\left(\frac{1}{4} - \frac{1}{2}\right)} = \frac{\frac{1}{16}}{\left(\frac{-3}{4}\right)\left(\frac{-1}{4}\right)} = \frac{1}{3}$ $\frac{Y(z)}{z} = \frac{8}{3(z - 1)} - \frac{2}{z - \frac{1}{2}} + \frac{1}{3(z - \frac{1}{4})}$ $Y(z) = \frac{8}{3} \cdot \frac{z}{z - 1} - 2\frac{z}{z - \frac{1}{2}} + \frac{1}{3} - \frac{z}{z - \frac{1}{4}}$ Taking inverse $-z$ transform yields $y(n) = \frac{8}{3}u(n) - 2\left(\frac{1}{2}\right)^n u(n) + \frac{1}{3}\left(\frac{1}{4}\right)^n u(n)$			
2	Determine the impulse response h(n)for the system de-scribed by the second order difference equation Y(n)=0.6y(n-1)-0.8y(n-2)+x(n)	20	5	K2

(An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam – 611 002, Tamilnadu.

